The original Michaelis constant: translation of the 1913 Michaelis-Menten paper.
نویسندگان
چکیده
Nearly 100 years ago Michaelis and Menten published their now classic paper [Michaelis, L., and Menten, M. L. (1913) Die Kinetik der Invertinwirkung. Biochem. Z. 49, 333-369] in which they showed that the rate of an enzyme-catalyzed reaction is proportional to the concentration of the enzyme-substrate complex predicted by the Michaelis-Menten equation. Because the original text was written in German yet is often quoted by English-speaking authors, we undertook a complete translation of the 1913 publication, which we provide as Supporting Information . Here we introduce the translation, describe the historical context of the work, and show a new analysis of the original data. In doing so, we uncovered several surprises that reveal an interesting glimpse into the early history of enzymology. In particular, our reanalysis of Michaelis and Menten's data using modern computational methods revealed an unanticipated rigor and precision in the original publication and uncovered a sophisticated, comprehensive analysis that has been overlooked in the century since their work was published. Michaelis and Menten not only analyzed initial velocity measurements but also fit their full time course data to the integrated form of the rate equations, including product inhibition, and derived a single global constant to represent all of their data. That constant was not the Michaelis constant, but rather V(max)/K(m), the specificity constant times the enzyme concentration (k(cat)/K(m) × E(0)).
منابع مشابه
A century of enzyme kinetic analysis, 1913 to 2013.
This review traces the history and logical progression of methods for quantitative analysis of enzyme kinetics from the 1913 Michaelis and Menten paper to the application of modern computational methods today. Following a brief review of methods for fitting steady state kinetic data, modern methods are highlighted for fitting full progress curve kinetics based upon numerical integration of rate...
متن کاملComparing Logistic and Michaelis-Menten Multiphasic Models for Analysis of in vitro Gas Production Profiles of some Starchy Feedstuffs
Two multi-phasic models (logistic (LOG) and Michaelis-Menten (MM)) with three sub-curves were used to describe gas production kinetics of corn (CG), barley (BG), wheat (WG) and triticale (TG) grains. In each model sub curve, 1 describes the gas production caused by fermentation of the soluble fraction, gas production caused by fermentation of the non-soluble fraction is described in sub curve 2...
متن کاملSome lessons about models from Michaelis and Menten
Michaelis and Menten's classic 1913 paper on enzyme kinetics is used to draw some lessons about the relationship between mathematical models and biological reality.
متن کاملAlternative Perspectives of Enzyme Kinetic Modeling
The basis of enzyme kinetic modelling was established during the early 1900’s when the work of Leonor Michaelis and Maud Menten produced a pseudo-steady state equation linking enzymatic catalytic rate to substrate concentration (Michaelis & Menten, 1913). Building from the Michaelis-Menten equation, other equations used to describe the effects of modifiers of enzymatic activity were developed b...
متن کاملDifferent pharmacokinetic parameters of phenytoin in Iranian Outpatients: Need to optimize the current dosage administration
Dose-dependent pharmacokinetic of phenytoin necessitates the estimation of the maximum rate of metabolism (Vm) and the Michaelis-Menten constant (Km) in a concerned population. The aim of this study was to determine the pharmacokinetic parameters of phenytoin in a sample of Iranian patients to optimize the antiepileptic pharmacotherapy. Fourty patients who received a constant dose of phenytoin ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemistry
دوره 50 39 شماره
صفحات -
تاریخ انتشار 2011